On the Limit as the Density Ratio Tends to Zero for Two Perfect Incompressible Fluids Separated by a Surface of Discontinuity

نویسندگان

  • C. H. ARTHUR CHENG
  • DANIEL COUTAND
  • STEVE SHKOLLER
چکیده

We study the asymptotic limit as the density ratio ρ−/ρ+ → 0, where ρ+ and ρ− are the densities of two perfect incompressible 2-D/3-D fluids, separated by a surface of discontinuity along which the pressure jump is proportional to the mean curvature of the moving surface. Mathematically, the fluid motion is governed by the two-phase incompressible Euler equations with vortex sheet data. By rescaling, we assume the density ρ+ of the inner fluid is fixed, while the density ρ− of the outer fluid is set to . We prove that solutions of the free-boundary Euler equations in vacuum are obtained in the limit as → 0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four different types of a single drop dripping down a hole under gravity by lattice Boltzmann method

In this paper the dynamic of a droplet on a surface with a hole is investigated under gravitational effect by using lattice Boltzmann method. Incompressible two-phase flow with high density ratio proposed by Lee is considered. Cahn’s theory is used to observe the wettability of the surface in contact with liquid and gas phases. Several parameters such as contact angle, surface tension and gravi...

متن کامل

Well-posedness and qualitative behaviour of solutions for a two-phase Navier-Stokes-Mullins-Sekerka system

We consider a two-phase problem for two incompressible, viscous and immiscible fluids which are separated by a sharp interface. The problem arises as a sharp interface limit of a diffuse interface model. We present results on local existence of strong solutions and on the long-time behavior of solutions which start close to an equilibrium. To be precise, we show that as time tends to infinity, ...

متن کامل

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

نگاشت همدیس در طرح‌های انگشتی سافمن- تیلور

 We studied the growth of viscous fingers as a Laplacian growth by conformal mapping. Viscous fingers grow due to Saffman-Taylor instability in the interface between two fluids, when a less viscous fluid pushes a more viscous fluid. As there was an interest in the rectangular Hele-Shaw cell, we solved the Laplacian equation with appropriate boundary conditions by means of conformal mapping tech...

متن کامل

Simulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm

This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009